

Synonym

ABPP, APPI, Amyloid-beta A4 protein

Source

Human SAPPbeta, His Tag(APP-H52H5) is expressed from human 293 cells (HEK293). It contains AA Leu 18 - Met 652 (Accession # <u>P05067-8</u>). Predicted N-terminus: Leu 18

Molecular Characterization

APP(Leu 18 - Met 652) P05067-8

Poly-his

This protein carries a polyhistidine tag at the C-terminus.

The protein has a calculated MW of 73.8 kDa. The protein migrates as 100-110 kDa under reducing (R) condition (SDS-PAGE) due to glycosylation.

Endotoxin

Less than 1.0 EU per μg by the LAL method / rFC method.

Purity

>95% as determined by SDS-PAGE.

>90% as determined by SEC-MALS.

Formulation

Lyophilized from 0.22 µm filtered solution in PBS, 0.3 M Arginine, pH7.4 with trehalose as protectant.

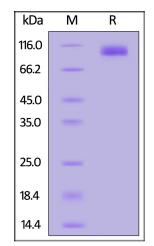
Contact us for customized product form or formulation.

Reconstitution

Please see Certificate of Analysis for specific instructions.

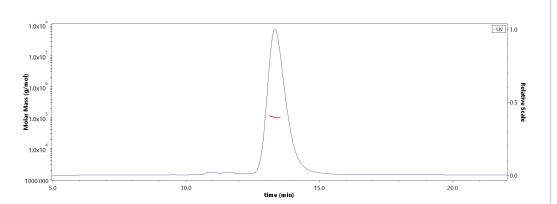
For best performance, we strongly recommend you to follow the reconstitution protocol provided in the CoA.

Storage


For long term storage, the product should be stored at lyophilized state at -20°C or lower.

Please avoid repeated freeze-thaw cycles.

This product is stable after storage at:


- -20°C to -70°C for 12 months in lyophilized state;
- -70°C for 3 months under sterile conditions after reconstitution.

SDS-PAGE

Human SAPPbeta, His Tag on SDS-PAGE under reducing (R) condition. The gel was stained with Coomassie Blue. The purity of the protein is greater than 95%.

SEC-MALS

The purity of Human SAPPbeta, His Tag (Cat. No. APP-H52H5) is more than 90% and the molecular weight of this protein is around 95-115 kDa verified by SEC-MALS.

Repor

Background

Amyloid precursor protein (APP) is a type I integral membrane protein ubiquitously expressed in many tissues and concentrated in the synapses of neurons. It has

Human APP / SAPPbeta Protein, His Tag (MALS verified)

three predominant splice variants: APP695, APP751, and APP770. The majority of APP is cleaved at the plasma membrane by the α -secretase in the non-amyloidogenic pathway. The amyloidogenic pathway starts with β -secretase cleavage by BACE1 on the N-terminal part of the A β domain, releasing sAPP β from a membrane-anchored fragment named β CTF or C99, which is subsequently cleaved by γ -secretase to release A β .

